

OROVILLE SYSTEM REPORT

CALIFORNIA WATER SERVICE

0

Oroville System Report

Prepared for

California Water Service

Project #436-12-17-21

Poley L wain

Project Manager: Polly Boissevain, Engineering Manager II 5-26-17

Date

uncon

QA/QC Review: Charles Duncan, President

5-26-17 Date

WEST YOST ASSOCIATES

Carlsbad

2173 Salk Avenue, Suite 250 Carlsbad, CA 92008 (760) 795-0365

Davis

2020 Research Park Drive, Suite 100 Davis, CA 95618 (530) 756-5905

Eugene

1650 W 11th Ave. Suite 1-A Eugene, OR 97402 (541) 431-1280

Irvine

6 Venture, Suite 290 Irvine, CA 92618 (949) 517-9060

Pleasanton

6800 Koll Center Parkway, Suite 150 Pleasanton, CA 94566 (925) 426-2580

Portland

4949 Meadows Road, Suite 125 Lake Oswego, OR 97035 (503) 451-4500

Sacramento

2725 Riverside Boulevard, Suite 5 Sacramento, CA 95818 (916) 504-4915

Santa Rosa

2235 Mercury Way, Suite 105 Santa Rosa, CA 95407 (707) 543-8506

Sunnyvale

1250 Oakmead Parkway, Suite 210 Sunnyvale, CA 94085 (408) 451-8453

Turlock

200 North Broadway, Suite C Turlock, CA 95380 (209) 226-6020

Walnut Creek

1777 Botelho Drive, Suite 240 Walnut Creek, CA 94596 (925) 949-5800

WEST YOST ASSOCIATES

CALIFORNIA E TITER SERVICE

Table of Contents

1.0 Introduction	1
2.0 Water System Overview	1
2.1 Service Area Overview	1
2.2 System Configuration and Pressure Zones	2
2.3 Supplies 2.3.1 Surface Water Supply 2.3.2 Groundwater Supply	3 3 3
2.4 Booster Pump Stations	4
2.5 Storage Tanks	4
2.6 Pressure Reducing Valves	5
2.7 Pipelines	5
2.8 Emergency Connections	7
3.0 Capital Program Review	7
3.1 Overview of Capital Planning Process	7
3.2 Capital Planning Efforts	8 8 9
3.3 Capital Improvement Program Implementation 1 3.3.1 Water Supply Strategy 1 3.3.2 Water Treatment Plant 1 3.3.3 Well Sites 1 3.3.4 Booster Pump Stations 1 3.3.5 System Storage 1 3.3.6 Distribution System Pipelines 1 3.3.7 Other System Improvements 1 3.3.8 Capital Program Summary 1	0 0 1 3 3 4 4 5 6
4.0 Other System Information	7
4.1 General Maintenance Practices1	7
4.2 Pipeline Age1	9
4.3 Non-Revenue Water1	9
4.4 Main Replacement Rates2	0
4.5 Breaks and Leaks2	0
5.0 Summary and Conclusions	2

List of Tables

Table 2-1. System Pressure Zones	2
Table 2-2. Water Supply Wells	3
Table 2-3. Booster Pump Stations	4
Table 2-4. Storage Tanks	4
Table 2-5. Pipeline Summary	6

Table of Contents

Table 3-1. Supply Improvements1	10
Table 3-2. Oroville WTP Projects 1	12
Table 3-3. Well Projects 1	13
Table 3-4. Pump Station Projects1	13
Table 3-5. Storage Projects 1	14
Table 3-6. Pipeline Projects1	15
Table 3-7. Other Projects1	16
Table 3-8. Capital Expenditure Summary for 2009 through 2016	17
Table 4-1. Existing Inspection and Maintenance Schedules	18
Table 4-2. Length of Pipe By Age Range 1	19
Table 4-3. Non-Revenue Water1	19
Table 4-4. Breaks and Leaks	21

List of Figures

Figure 2-1. Oroville Service Area	23
Figure 2-2. Oroville Distribution System	24

1.0 INTRODUCTION

California Water Service (Cal Water) has requested that West Yost Associates (West Yost) prepare a report summarizing the Cal Water Oroville District water system facilities, documenting capital projects implemented since 2009, when Cal Water undertook a capital planning effort for the Oroville District. The report also provides system statistics, such as leak and main break history. This report is intended to be a background document to be provided to Butte County Local Agency Formation Commission, who will be conducting a regional water service review for the greater Oroville area.

Cal Water has provided water service to its customers in the City of Oroville and portions of unincorporated Butte County since 1927. Cal Water is regulated by the California Public Utilities Commission (CPUC), which is responsible for setting the water utility rates paid by Cal Water's customers. The CPUC sets rates based on a cost of service model, meaning the rates reflect the full cost of operating, maintaining, and upgrading the water system.

This report is organized into the following sections:

- Section 2: Presents a water system overview
- Section 3: Summarizes capital improvements implemented since 2009
- Section 4: Provides information on maintenance practices and other system statistics
- Section 5: Presents a summary and conclusions from the review

2.0 WATER SYSTEM OVERVIEW

This section summarizes the water service area and the water system. Information is drawn from Cal Water's various planning documents and interviews with District staff.

2.1 Service Area Overview

Cal Water is one of three water purveyors in the City of Oroville. Cal Water serves a major portion of the City, and small unincorporated areas within Butte County. Figure 2-1 shows the Cal Water service area.

In 2016, the Oroville District had an average daily demand of 2.0 million gallons per day (mgd) and a maximum day demand of 5.7 mgd, where the average daily demand is the annual usage divided by 365 days, and the maximum day demand is the highest usage day within the year. Demands have been decreasing over the last several years, with the highest average day demand in the last 12 years, 3.7 mgd, occurring in 2008, and the highest maximum day demand in the last 12 years, 7.2 mgd, occurring in 2007.

The population within the Oroville District has been increasing steadily but slowly over the last 12 years, from 10,088 in 2005 to 10,543 in 2016, for an average annual growth rate of approximately 0.4 percent, which is the same as the overall Butte County average annual growth rate over the same time-period.

Future growth is anticipated with the development of currently vacant parcels within the existing service area. Population within the District is projected to be just under 13,000 by 2040. Due to planned water conservation programs and State regulations with regards to water use, the projected average daily use in 2040 is 3.2 mgd.

2.2 System Configuration and Pressure Zones

Figure 2-2 and Table 2-1 summarize pressure zones and key distribution system facilities in the Oroville District distribution system. The system is supplied from the Oroville Water Treatment Plant (Oroville WTP) and four wells. The Oroville WTP supply is Feather River water, supplied from the Thermalito Power Canal.

Table 2-1. System Pressure Zones							
Pressure Zone Hydraulic Grade Line (HGL)	Facilities Providing Supply to Zone	Facilities Supplying Other Zones	Storage Reservoirs				
325	 Booster Pump Station (Station 15, at Oroville WTP) Well (Station 2) Well (Station 10) 	 Booster Pump Station (Station 1) Booster Pump Station (Station 3) Booster Pump Station (Station 11) 	Reservoir (Station 15, at Oroville WTP)				
435-1	 Booster Pump Station (Station 1) Booster Pump Station (Station 3) Booster Pump Station (Station 11) Well (Station 5) Well (Station WPR / 901) 	Booster Pump Station (Station 7)	Reservoir (Station 16)				
435-2 ^(a)	Booster Pump Station (Station 7) ^(b)	N/A	N/A ^(c)				
470	Booster Pump Station (Station 15)	N/A	N/A ^(c)				
 (a) Zone 435-2 is now combined with zone 435-1. (b) Currently inactive. (c) Hydropneumatic tank at booster pump station. 							

Each of the major zones, Zone 325 and 435-1, has distribution system storage reservoirs. Zone 325 includes about 38 percent of the system demand. Zone 435-1 includes about 60 percent of the demand. The two small hydropneumatic zones, 470 and 435-2, include the remaining 2 percent of demand. District staff has indicated that the facilities for supplying Zone 435-2 are inactive, and that Zone 435-2 is now combined with Zone 435-1.

2.3 Supplies

The supplies for the Oroville District consist of surface water from the Feather River and groundwater. The flexibility of having both surface water and groundwater supplies allows Cal Water to deliver high quality water to the Oroville distribution system throughout the year. When significant rainfall events increase surface water turbidity, making surface water more difficult to treat, Cal Water switches to groundwater supplies to meet system demands.

2.3.1 Surface Water Supply

Cal Water purchases water from Butte County and Pacific Gas and Electric Company (PG&E). Butte County is a State Water Project (SWP) contractor and contracts with Cal Water for delivery of a portion of its SWP allocation. SWP supply is conveyed through Lake Oroville to the Thermalito Power Canal, where Cal Water pumps it to the Oroville WTP reservoir via Cal Water's Station 14 Pump Station. Water supply from PG&E comes from the West Branch of the Feather River, after use by PG&E for hydroelectric operations.

Surface water supplies are treated at Cal Water's 7.0 mgd Oroville WTP. The Oroville WTP, called Station 15, is a conventional treatment plant consisting of sedimentation basins and a gravity sand and anthracite filtration system. Treated water from the sand filters enters a sump where four pumps deliver water to the 450,000-gallon treated water reservoir at Station 15. All treated water from the Oroville WTP is pumped into the Station 15 reservoir. From Station 15, supply is fed by gravity into Zone 325, which is also referred to as the Low Zone. Hydropneumatic Zone 470 is supplied by pumps that pump from the Station 15 reservoir.

2.3.2 Groundwater Supply

There are four groundwater production wells within the Oroville District. Table 2-2 summarizes information about the wells. Wells draw from the Feather River alluvial fan, which underlies the Oroville District.

Table 2-2. Water Supply Wells							
Station	Service Zone	Year Well Drilled	Well Depth, feet	Flow Rate, gpm	Total Dynamic Head, feet	Pump HP	Pump Installation Date
2	325	1928	153	900	245	100	2016
5	435-1	1949	340	265	320	30	2007
10	325	1956	150	680	215	75	2010
WPR (901)	435-1	1940's	152	455	350	60	2007

2.4 Booster Pump Stations

The system has five booster pump stations. Table 2-3 summarizes the hydraulic parameters for the pump stations and individual pumps within the Oroville District.

Table 2-3. Booster Pump Stations								
Station	Source Zone	Service Zone	Unit	Pump Capacity, gpm	Total Dynamic Head, feet	Pump HP	Pump Installation Date	
1	225	125 1	В	900	140	160	2007	
I	525	435-1	С	1150	160	160	2000	
3	325	435-1	А	1200	175	175	1946	
7	435-1	435-2	А	60	72	73	1949	
11	11 325	105 1	А	330	120	104	1956	
		430-1	В	680	140	112	1956	
			А	1600	35	33	2000	
		005	В	1600	35	33	1975	
15	WIP	323	С	1600	35	33	1975	
10			D	1600	35	33	1975	
		470	E	350	110	110	1999	
	VVIP	470	F	350	110	100	1975	

2.5 Storage Tanks

The Oroville District has two storage tanks within the distribution system, with a total storage volume of 2.45 million gallons (MG). Table 2-4 summarizes the parameters of the tanks.

Table 2-4. Storage Tanks								
Station	Service Zone	Volume, MG	Tank Type	Base Elevation, feet	Overflow Elevation, feet	Height, feet	Diameter, feet	Year Installed
15	325	0.45 ^(a)	Ground-Level Welded Steel	307	326	19	64	1976
16	435-1	2	Ground-Level Welded Steel	410	435	25	117	1968
(a) 0.3 MC	^(a) 0.3 MG of the reservoir is reserved for providing disinfection credit for the Oroville WTP.							

2.6 Pressure Reducing Valves

The Oroville District has one pressure reducing valve (PRV) that supplies Zone 325 from Zone 435-1. The valve helps to control the hydraulic grade line in zone 325 when the Station 15 reservoir is not in service and wells are supplying the system. The PRV is at an elevation of 180 feet above mean sea level.

2.7 Pipelines

There are 59 miles of pipe in the entire system, ranging from less than 4 inches up to 30 inches in diameter. Table 2-5 summarizes the existing pipelines within the Oroville District by length, diameter and material.

	Table 2-5. Pipeline Characteristics Summary											
					Material, Le	ength in feet						
Diameter	Asbestos Cement	Concrete Cylinder Pipe	Cast Iron	Cement Lined and Coated Steel	Copper	Ductile Iron	Polyvinyl Chloride	Steel	Wrought Iron	Unknown	Total Length	Percentage of Total Length
<4	-	-	3,288	-	687	-	10	1,053	7,905	429	13,371	4%
4	5,222	-	21,631	36	-	36	51	4,879	5,717	58	37,629	12%
6	45,215	-	32,551	120	-	3,746	10,503	8,960	3,580	758	105,433	34%
8	52,991	-	11,863	128	-	3,077	16,823	3,645	5,783	250	94,558	30%
10	2,340	-	662	12	-	264	-	38	-	10	3,326	1%
12	40,069	-	3,665	198	-	460	1,999	-	-	280	46,672	15%
14	-	-	64	-	-	-	-	-	-	-	64	0%
16	2,019	-	-	-	-	3,511	-	32	-	7	5,568	2%
18	-	-	-	-	-	-	-	-	-	473	473	0%
20	-	-	128	23	-	-	-	3,016	-	445	3,611	1%
24	-	-	-	-	-	-	105	-	-	490	596	0%
30	-	1,064	-	-	-	-	-	-	-	-	1,064	0%
Total	147,854	1,064	73,852	517	687	11,094	29,491	21,621	22,986	3,200	312,364	100%
Percentage	47%	0%	24%	0%	0%	4%	9%	7%	7%	1%	100%	

2.8 Emergency Connections

The Oroville District has one standby connection with the Thermalito Water and Sewer District (TWSD), which was installed in 2002. The interconnection consists of an 8-inch, 2-way meter installed between a TWSD main and a Cal Water main on Worthy Avenue. The interconnection is in Zone 470. This connection provides a benefit for customers in the area during maintenance outages and emergencies by providing a supplemental supply source. The connection was used to provide supplemental supply during a tank repair project.

3.0 CAPITAL PROGRAM REVIEW

This section reviews the capital program that Cal Water has implemented since 2009. This section is organized into the following subsections:

- Section 3.1: Provides an overview of the planning process
- Section 3.2: Summarizes the capital planning efforts that Cal Water has undertaken
- Section 3.3: Summarizes the implementation of capital projects

3.1 Overview of Capital Planning Process

Cal Water conducts short-term and long-term planning for each of its water systems to evaluate distribution system needs to address system deficiencies and evaluate improvements. Planning evaluations assess system needs based on: current system performance; planned future growth and how that impacts system performance; and system renewal and replacement needs, all of which are balanced against the impact any particular project will have on the cost of service.

The CPUC conducts a thorough review of Cal Water's operations, expenses, and proposed water system improvements through the General Rate Case (GRC) process. The purpose of the GRC is to ensure that the rates accurately reflect the cost of providing service and that Cal Water is appropriately operating, maintaining, and upgrading its facilities.

Every three years, Cal Water is required to prepare and submit a GRC application to the CPUC. The GRC application includes in-depth information about Cal Water's financials, completed water system improvements, projected expenses, and proposed capital projects, along with detailed justifications for those proposed projects.

In developing information for the GRC, Cal Water uses various planning documents and an internal planning process. The first step in this process is to develop criteria to determine which projects need to be completed over the subsequent three-year period based on various regulatory and non-regulatory triggers. After using these criteria to review and analyze the system, projects are recommended to address issues identified with water quality, water supply, storage, and maintenance problems. Where clear solutions to identified issues are not apparent, alternatives are analyzed to identify a preferred solution. The initial list of projects is then evaluated to determine if multiple projects could be grouped together to be more cost effective.

The list of projects is then reviewed with individual Cal Water districts to obtain feedback and identify other local projects that should be considered. Projects are then evaluated to assess their

potential impact on the cost of service. After this internal review process is completed and a final list of projects and their respective justifications is completed, the project list is submitted to the CPUC as part of Cal Water's GRC application.

Once the GRC is submitted, an Administrative Law Judge (ALJ) is assigned to oversee the proceeding. The Office of Ratepayer Advocates (ORA), an independent state agency whose statutory mission is to advocate on behalf of the customers of the utilities regulated by the CPUC, and other parties in the proceeding review the application and submit their own testimony. The CPUC hosts public hearings on the application. Presuming the parties to the proceeding do not reach a settlement agreement on the application, formal evidentiary hearings are held and presided over by the assigned ALJ. At the conclusion of the process, the ALJ issues a proposed decision that is voted on by the CPUC Commissioners. The final decision in the proceeding establishes Cal Water's rates, budgets, and approved water system improvements for the subsequent three-year period. The entire review process takes approximately 18 months.

3.2 Capital Planning Efforts

This section provides a summary of Cal Water's recent capital planning efforts.

3.2.1 2009 Capital Improvement Plan (2009 Plan)

In 2009, Cal Water undertook a capital planning effort that evaluated both near-term and long-term needs of the Oroville District. The planning effort evaluated the District's supply and distribution system to assess their ability to meet existing and future system demands. The scope of the project included the following:

- Analysis of a long-term water supply strategy;
- Evaluation of the key facilities capacities to meet existing and future demands;
- Hydraulic evaluation of the water distribution system for existing and future demand to assess system performance;
- Reliability evaluation; and,
- Asset evaluation to inventory facilities and identify renewal and replacement needs.

The existing demand conditions were analyzed and projections for future development and demands were prepared for use in the supply and facilities evaluation. These demand projections were used to evaluate the existing facilities, including the distribution pipeline network, pumping facilities and storage facilities. A computerized hydraulic model of the distribution pipeline network was developed and calibrated for use as a planning and operational tool. Demand projections were also used to evaluate the adequacy of the water supply sources for the planning period, which included a review of both the surface and ground water supplies, and the water quality of each. A water supply strategy was developed with recommendations and alternatives.

A renewal and replacement evaluation was also conducted as part of the project, which consisted of a visual assessment of the distribution system facilities (raw water facilities, Oroville WTP, wells, distribution system pump stations, and distribution system reservoirs) to assess condition, recommend improvements and evaluate replacement based on the design useful life expectancies of

facilities. The project did not include a pipeline renewal and replacement analysis, but identified pipeline replacement projects based on projects planned by Cal Water and included in the 2009 GRC.

3.2.2 Cal Water Asset Management Program

An important part of Cal Water's commitment to managing its infrastructure to provide safe and reliable water to its customers is the regular replacement of pipelines. Historically, Cal Water's Main Replacement Program focused on replacement of small-diameter and unlined steel mains to improve system flow capacity and pipeline reliability, with a goal to replace all mains in these categories within a 25 to 50-year period. Decisions for replacement targeted mains less than 6-inch diameter and unlined steel mains that are 6-inches in diameter or larger, with priorities based on leak history and fire flow capacity. Cal Water used a leak tracking system to develop leak history for individual mains, and used leaks per 100 miles of main to set targets for main replacements within each Cal Water District.

In 2007, Cal Water started developing a more robust Pipeline Asset Management Program for its pipelines to address pipeline replacement more comprehensively, with the goal to manage the entire lifecycle of assets to achieve an acceptable level of service to customers, with an acceptable level of risk exposure, at an affordable cost. The program objectives included: reducing the risk of damage to the environment and local infrastructure by unplanned main breaks; increasing system reliability and service delivery to customers by replacing pipelines with a high likelihood of failure; and, reinvesting capital funding in the infrastructure more efficiently by targeting pipelines in poor condition. The following is a timeline that describes the activities that were undertaken to develop the current program:

- 2006 ORA recommended developing an Asset Management (AM) Program
- 2007 Cal Water engaged Westin Engineering to perform AM assessment
- 2009 ORA and Cal Water agreed to pilot a new main replacement program
- 2012 Pipeline asset data collection; age, materials and size
- 2012 Risk Management study identified several risks from the distribution system
- 2012 Kicked off main replacement pilot with the ORA
- 2013 Piloted KANEW software and RIVA decision support tool
- 2013 Presented results of pilot to ORA for the Cal Water Stockton District
- 2014 Deployed the American Water Works Association (AWWA) forecasting tool, developed and deployed AM program for pipelines in preparation for the 2015 GRC

Cal Water considers typical ranges of design useful life assumptions for major water system components. The design useful life estimates indicate when rehabilitation or replacement may be needed. Cal Water will typically plan its rehabilitation and replacement programs using not only the design useful life expectancies, but also information indicating the condition of their facilities such as leak/break records for pipelines, and maintenance or repair records and field assessments of pump stations and reservoirs.

3.3 Capital Improvement Program Implementation

This section summarizes capital investments since 2009.

3.3.1 Water Supply Strategy

The 2009 capital planning effort evaluated whether Cal Water should:

- Continue with the current supply mix, including use of treatment of water at the Oroville WTP, supplemented with groundwater wells;
- Continue to purchase PG&E water or purchase more Butte County SWP water;
- De-commission the Oroville WTP and purchase treated water from South Feather Water and Power Agency; or,
- Switch to an all groundwater supply.

The recommended water supply strategy was to continue with the current supply mix, and continue to purchase water from PG&E, because it was the most cost-effective and reliable future water supply strategy. These improvement recommendations are summarized in Table 3-1, along with other Oroville District projects.

Table 3-1. Supply Improvements							
Improvement Status							
2009 Capital Planning Recommendations							
Make improvements to the Lower Miocene Canal, including flume repair	Repairs completed in 2009. Some flumes still need repair ^(a)						
Line the Lower Miocene Canal to reduce water loss and recoup water for potential sale	No longer required with change in point of diversion to the Thermalito Power Canal						
Other District Projects							
Lower Miocene Canal Study	Completed in 2009						
Station 14 Improvements	Completed in 2010						
Re-construct Gold Run Diversion	Completed in 2012						
Gunite earthen ditch Completed in 2016							
 (a) Flume projects not yet completed since canal is no longer used for deliveries to the Oroville WTP. (b) Minor repair project budgets are typically funded from non-specific capital budgets or attached to a larger project and not accounted for separately. 							

Historically, Cal Water's PG&E supply was delivered to the Oroville WTP via the Lower Miocene Canal, an unlined canal, which has significant seepage losses. The 2009 capital planning effort identified \$1M in canal improvements that would be needed to meet the District's supply needs, and a potential \$5M longer-term project to re-line the canal to reduce seepage losses and recoup the water for possible sale.

To improve supply reliability and reduce operating costs, Cal Water worked over a several-year period to negotiate agreements with PG&E and California Department of Water Resources (DWR) (operator of Lake Oroville) for PG&E to divert Cal Water's surface water into Lake Oroville from the Lime Saddle Pump Station. In 2010, Cal Water completed improvements to increase the capacity of its Station 14 pump station on the Thermalito Power Canal, to pump water into the Oroville WTP. Cal Water has been operating with the new diversion from the Thermalito Power Canal for about three years. Cal Water still operates the Lower Miocene Canal to supply several irrigation customers.

According to Oroville District staff, the supply from the Thermalito Power Canal is colder and generally has lower turbidity than water from the Miocene Canal, making it easier to treat. With supply now diverted from the Thermalito Power Canal, Cal Water indicates that the source water quality is improved. The federal Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) requires water systems to monitor source water characteristics and provide additional treatment if their source is vulnerable to microbial contaminants. Continued diversion from the Miocene Canal would have required treatment upgrades to meet LT2ESWTR regulation. With the change in diversion point to the Thermalito Power Canal, Cal Water's current treatment processes are adequate to meet the regulation.

The change in diversion to the Thermalito Power Canal resulted in significant long-term cost-savings for Cal Water's customers by eliminating the need for both long-term operating and maintenance costs for the Lower Miocene Canal, and for Oroville WTP process improvements to meet the LT2ESWTR regulation.

3.3.2 Water Treatment Plant

The 2009 Plan contained a list of recommended projects at the Oroville WTP, which were related to components having reached their useful life. The recommended projects were intended to help increase hydraulic capacity, increase water quality performance or reduce operator workload. Table 3-2 summarizes recommendations for projects at the Oroville WTP, and their current status. The table also includes other projects that the District has completed.

Improvement	Status
2009 Capital Planning Recommendations	
Repair leaking flume between mixer and basin	Completed ^(a)
Increase cross-sectional flow area between Basins 1 and 2 and Basins 2 and 3 by replacing ports with a baffling wall	Completed ^(a)
Modify and add baffling walls in basins to improve length to width ratio and overall performance	Completed ^(a)
Automate operation of pump that recycled water from settling ponds to forebay to provide consistent flows	Completed (a)
Increase CT reliability by calculating contact times between Basin 3 and the sump	Completed ^(a)
Increase wall height in forebay to mixer to prevent overflows	Completed (a)
Replace 800 feet of auxiliary pipe in raw water ditch	Currently being implemented
Re-sand sludge basins	Completed in 2010
Chlorine cell	Completed in 2011
Metal covers over filters	Not performed — not necessary at this time ^(b)
Replace air scour valves on filters	Completed in 2010
Pave parking area	Scheduled for 2017 per GRC
Replace lining in Oroville Reservoir and Sed Basin 3	Completed in 2009
Backwash recovery valve	Completed in 2014
Other District Projects	
Filter Valve replacements	Completed in 2009
New filter media	Completed 2011
Treatment plant controls	Completed in 2013
Chlorine generation unit	Completed in 2015
Filter control modifications	Completed in 2014
Fencing and security	Completed in 2015
Replace filtering sand	Completed in 2016
Install generator	Currently being implemented
(a) Minor repair project budgets are typically funded from non-	specific capital funds or attached to larger projects so dates of

Table 3-2. Oroville WTP Projects

This project was cancelled after review with treatment experts indicated that pre-chlorination practices reduce the risk of algae growth. (b)

3.3.3 Well Sites

The 2009 Plan provided recommendations to replace the pump and motor at Station 10 and to replace the pump at Station 2. All well pumps have been replaced in the last 10 years. Table 3-3 summarizes recommendations for projects at the wells, and their current status. The table also includes other projects that Oroville District has completed.

Table 3-3. Well Projects						
Improvement Status						
2009 Capital Planning Recommendations						
Replace STA-2 pump	Replaced pump and motor in 2016					
Replace STA-10 pump and motor	Replaced STA-10 motor in 2009. Replaced pump in 2012.					
Construct new well	Project deferred. Project under consideration for future GRC ^(a)					
Other District Projects						
STA-2, new flow recorder Completed in 2014						
(a) The new well project was deferred due to lack of growth in service area and lower demands, so additional supply capacity is currently not needed. The project will be re-considered as system demands increase.						

In addition, at Station 2, Oroville District has landscaped the area and included a rain garden to retain stormwater runoff.

3.3.4 Booster Pump Stations

The 2009 Plan provided recommendations to replace several booster pumps in the system. Table 3-4 summarizes the recommendations. The table also includes other projects that the Oroville District has completed.

Table 3-4. Pump Station Projects			
Improvement	Status		
2009 Capital Planning Recommendations			
Replace Booster Pumps at End of Useful Life – 2009 capital planning budgeting assumed eight replacements between 2010 and 2015, based on design life of pumps	 Replaced pump and motor 1-B in 2010 Replaced motor 1-C in 2011 Replaced motor 3-A in 2014 Replaced motor 15-B in 2014 Replaced pump and motor 15-C in 2016 Replacement for Station 1 and 3 currently being designed 		
Other District Projects			
STA-3 main disconnect replacement	Completed in 2013		

The 2009 Plan identified specific pump replacements based on design useful life, and then created a placeholder budget for eight pump replacements between 2010 and 2015. Cal Water typically conducts pump efficiency testing, and uses this information along with pump condition, to determine when pumps should be replaced. The Oroville District is currently designing a replacement station for Stations 1 and 3 to modernize the station, improve its operational efficiency, and reduce its operating costs.

3.3.5 System Storage

The 2009 Plan provided a recommendation to construct 1.4 MG of additional storage as part of the capacity analysis and to replace the hydropneumatic tank at the Oroville WTP as part of the rehabilitation and renewal analysis. These recommendations are summarized in Table 3-5, along with storage-related projects that the Oroville District has implemented in the last few years.

Table 3-5. Storage Projects				
Improvement Status				
2009 Capital Planning Recommendations				
Construct 1.4 MG Storage in Zone 325 This project has not been implement				
Replace STA-15 Hydro Tank Completed in 2016				
Other District Projects				
Replace tank berm STA 16 - High Duty Res Completed in 2010				
Replace tank berm STA-15 Completed in 2010				
Paint Interior, Upgrade Cathodic Protection Completed in 2012				
Paint Interior STA-16	Completed in 2012			
STA-16 Cathodic Protection System Upgrades Completed in 2016				

The 2009 Plan identified a need for new storage in Zone 325 to provide additional storage capacity. This project has not been completed because water tank projects have focused on protecting and maintaining existing facilities, which is generally more cost-effective than building new storage facilities and because water conservation efforts have decreased water demand.

3.3.6 Distribution System Pipelines

Table 3-6 summarizes the projects that were recommended in the 2009 Plan, as well as other projects that the Oroville District has implemented recently.

Improvement	Status			
2009 Capital Planning Recommendations				
Virginia Avenue, replace 1,700 feet of 6-inch with 8-inch	Completed in 2009 and 2010. Project extended to address leaking mains. Included 2,400 feet of 8-inch and 700 feet of 6-inch.			
Oak Street, replace 950 feet of 2-inch with 6-inch	Completed in 2011			
Linden Avenue, replace 960 feet of 4-inch, 6-inch and 7-inch with 6-inch	Constructed portion of project in 2012. Southern portion of project cancelled because there have been no leakage problems.			
First Avenue, replace 650 feet of 2-inch with 6-inch	Cancelled to use funds for Oak Street project			
Wilcox Avenue, replace 860 feet of 4-inch with 6-inch	Completed in 2012			
Other District Projects				
Relocate 8-inch main in Spencer	Completed in 2011			
Valve replacement program	Completed in 2011			
Unscheduled main replacements	Completed in 2012			
Lincoln Blvd upgrades	Completed in 2013			
Lincoln, 1300 feet and length of easement	Completed in 2014			
Daryl Porter Main Replacement	Completed in 2015			
Acacia, 535 feet of 6-inch	Completed in 2015			
3rd Avenue, 1096 feet of 8-inch PVC	Completed in 2016			
Bridge Street, 700 feet of 12-inch DI	Completed in 2016			

Table 3-6. Pipeline Projects

In 2006, Butte County conducted a Municipal Services Review of the Oroville District system where it provided a summary of determinations, which lists findings for the areas evaluated in the report. The determination related to the distribution system was that while the majority of facilities utilized by Cal Water's Oroville District are in good condition, some areas are in need of significant rehabilitation, such as the pipelines used by the El Medio Fire District in the southern portion of the Oroville District's service area, generally south of Wyandotte Avenue (see Figure 2-1). The 2009 capital planning effort assessed pressures in this area, and concluded that the problems described appeared to result from the rapid opening or closing of hydrants that cause transient pressure problems. Some of the pipeline replacement projects that were identified in the 2009 Plan and implemented by Cal Water are within the El Medio Fire District area, including pipelines along Virginia Avenue and Clinton Avenue.

3.3.7 Other System Improvements

Table 3-7 summarizes other system improvements, including standby generators, security and Supervisory Control and Data Acquisition (SCADA) system improvements.

Table 5-7. Other Projects				
Improvement Status				
2009 Capital Planning Recommendations				
Generator at WTP	Currently being completed			
Generator at Station 1	Will be included as part of Station 1 and 3 replacement project			
Generators at wells	Not yet completed (a)			
Security Improvements, Stations 2 and 10	Completed in 2011 and 2012			
SCADA System improvements at WTP and Station 11 Completed in 2011				
Other District Projects				
Data Acquisition Radio Replacement	Completed in 2016			
Solar Powered Transmitter Completed in 2016				
(a) These projects are lower priority than providing standby generator at WTP, since the WTP provides the majority of supply to the system.				

Table 2.7 Other Projects

The 2009 Plan provided recommendations to install generators at the Oroville WTP, the Station 1 booster pump station and at Wells 2, 5, 10 and Cal Water's proposed new well. The Oroville District is currently completing a project to install standby power at the Oroville WTP. Cal Water is also in the process of designing a new booster pump station that will replace the existing booster pump stations at Stations 1 and 3, and will include an onsite generator. Standby power has not yet been installed at the three existing wells, since these projects are considered lower priority than providing standby power at the Oroville WTP which will allow continued operation of the Oroville WTP, the system's principal supply source, following power failure.

The 2009 Plan recommended implementing security improvements at Stations 2 and 10. Improvements were completed in 2011 and 2012, as part of a comprehensive program to improve security at Oroville District system facilities. Improvements included installing new fencing, high-security locksets, security bars and backup systems for Oroville District's SCADA system.

The Oroville SCADA system is used to monitor and control operations at the Oroville WTP and key distribution system facilities. Major upgrades to the SCADA system were completed in 2011. The upgrades enable operation and monitoring of all facilities, either from the Oroville WTP, or from a remote location. During the February 2017 evacuation of the City of Oroville and surrounding areas due to emergency operations at Oroville Dam, the Oroville District water system was operated remotely from the Cal Water Chico District headquarters.

3.3.8 Capital Program Summary

Table 3-8 summarizes capital expenditures in the Oroville system for the improvements identified in Section 3.3.1 through 3.3.7. The capital costs shown in the table summarize Cal Water's capital investments made in system facilities and pipelines to enhance system capacity, improve reliability and/or maintain facilities condition. The table does not include other capital expenditures, such as

equipment purchases, completion of the metering program, or hydrant replacements. Costs shown in Table 3-6 are about 90 percent of overall system capital expenditures for 2009 through 2016.

Table 3-8. Capital Expenditure Summary for 2009 through 2016			
Program Area Capital Cost			
Water Supply	\$1,250,000		
Water Treatment	\$1,140,000		
Wells	\$230,000		
Booster Pump Stations	\$125,000		
System Storage	\$750,000		
Distribution System Pipelines	\$3,815,000		
Other System Improvements	\$393,000		
Total	\$7,703,000		

4.0 OTHER SYSTEM INFORMATION

This section discusses general maintenance practices in the distribution system, and provides statistics on pipeline age, water loss and main breaks.

4.1 General Maintenance Practices

Cal Water's maintenance program includes addressing and repairing problems or defects as they are discovered during frequent routine inspections that are performed according to the schedule provided in Table 4-1. Cal Water also proactively conducts preventative maintenance tasks that prevent failures from occurring. Preventative maintenance tasks are triggered either by equipment operating time or by calendar. Many of these maintenance tasks and corrective actions require facilities to be taken off-line, which Cal Water is able to flexibly manage in winter periods of low demand by alternating the operation of the surface water treatment plant with its groundwater wells.

Г

Table 4-1. Existing Inspection and Maintenance Schedules			
Water System Asset	Action	Frequency	
Gauges and Flow Meters	In-depth Inspection and Calibration	Annually	
	Monitored	Continuously by SCADA	
	Service Mechanical Equipment	Quarterly and Annually	
Water Treatment Plant	Sedimentation Basin and Raw Water Storage Grit Removal Every 6 Months		
	As-Needed Mechanical Equipment Replacements	Annually	
	Visual Site Inspection	Daily	
Booster Pumps	Pump Lube/Oil/PreventativeManufacturer's RunMaintenanceRecommendation or A		
	In-depth Facility Inspection	Every 3 Years	
	Visual Site Inspection	Daily	
Wells	Chemical Feed Equipment Monitored	Daily when Operating	
	Exercised for Water Quality Testing	Monthly	
	In-depth Inspection	Every 3 Years	
	Visual Site Inspection	Daily	
Water Storage Reservoirs	Cathodic Protection Inspection Weekly		
Water Storage Reservoirs	Exterior Inspection Every 5 Years		
	Interior Inspection	Every 5 Years	
Blowoff Assemblies	Flush Low Flow Areas Annually		
	Flush	Every 5 Years	
Distribution System Dising	Flush Dead-Ends in Low-Flow Areas	Annually	
Distribution System Piping	Flush All Dead-End Distribution Mains Every 5 Years		
Distribution System Valves	Exercise and Inspection	Every 5 Years	
Lludranta	Exercised	Annually	
Hydrants	Flow Tests	As-needed	
Concretera	Test	Monthly	
Generators	Service and Inspection	Annually	
Drosouro Roducing Stations	Visual Inspection	Annually	
	Rebuilt	Every 5 Years	
Opening Materia	Residential Meter Accuracy	Every 5 Years	
Service Meters	Commercial Meter Accuracy	Annually	

4.2 Pipeline Age

Table 4-2 summarizes age statistics for distribution system pipelines, compiled from Cal Water's geographic information system. Approximately 32 percent of the system is at least 70 years old. Most of the pipes in this age bracket are either cast iron or welded iron. Approximately 34 percent of the system is between 50 and 70 years old. Most of the pipes in this age bracket are asbestos cement. The pipelines in each of the age brackets mentioned above are performing well, as the Oroville District does not experience a significant amount of breaks and/or leaks.

Table 4-2. Length of Pipe By Age Range					
	Pipeline Length, feet				
	Before 1948 (70+ years old)	1948 – 1967 (50 – 70 years old)	1968 – 1987 (30 – 50 years old)	1988 – Present (less than 30 years old)	Total, feet
Total Length	99,284	105,405	70,854	37,067	312,610
Percentage	32	34	23	12	100

4.3 Non-Revenue Water

Non-revenue water, is the difference between water supplied to the system and water consumed. Cal Water completed its residential metering program in 2013. Prior to that point in time, non-revenue water could only be estimated. Non-revenue water has been calculated for each year since 2013, when the residential metering program was completed. The calculated values for the last three years for non-revenue water in the Oroville District are provided in Table 4-3.

Table 4-3. Non-Revenue Water				
Parameter	2014	2015	2016	Average, 2014 - 2016
Total Water Produced, thousand gallons, kGals	869,313	756,755	737,093	787,720
Total Water Sales, kGals	799,299	699,701	679,704	692,901
Non-Revenue Water, kGals	70,014	57,054	57,389	61,485
Non-Revenue Water, percent	8.1	7.5	7.8	7.8

Historically, non-revenue water of 10 percent or less has been considered an acceptable level for water utilities. Cal Water's non-revenue water percentage ranged from 7.5 to 8.1 percent, starting in 2014, the first year after completing the metering program. In 2015, California Senate Bill 555 the *Urban Retail Water Suppliers: Water Loss Management* bill was passed, which will require more detailed reporting on water loss, starting in 2017. DWR has developed a Water Audit Method tool that enables utilities to better quantify losses attributable to metering and data errors or leakage. The tool also incorporates financial statistics to evaluate the cost of water loss so that utilities can identify cost-effective ways to reduce water loss. Cal Water staff have been trained in

the use of the Water Audit Method tool, and used it for reporting water loss information in their 2015 Urban Water Management Plan.

4.4 Main Replacement Rates

The Oroville District system has a total of 59 miles of water mains. From 2009 through 2014, main replacement rates in the Oroville District ranged from 318 feet per year to 2,955 feet per year, with an average of 2,034 feet per year, or 0.65 percent per year of all pipelines. In its 2015 GRC, Cal Water used the AWWA replacement model forecasting tool to estimate the percentage of high risk pipelines in each system. For the Oroville District system, 0.5 percent of the system was judged to be high-risk. The CPUC approved a main replacement rate of 0.5 percent per year for 2016 through 2018, or 1,558 feet per year.

4.5 Breaks and Leaks

The Oroville District provided information on the number of breaks and leaks that have occurred within the Oroville District, which are shown in Table 4-4. Using the total length of pipelines within the Oroville District, the number of breaks and leaks per 100 miles of pipe per year was calculated. These values are also shown in Table 4-4. The Oroville District has indicated that these values are for both leaks and breaks, as the Oroville District tracks both, but does not distinguish between the two.

Table 4-4. Breaks and Leaks		
Year	Breaks/Leaks	Breaks or Leaks per 100 miles of Pipe
1991	2	3.4
1992	9	15.2
1993	9	15.2
1994	15	25.3
1995	6	10.1
1996	1	1.7
1997	16	27.0
1998	6	10.1
1999	9	15.2
2000	4	6.8
2001	8	13.5
2002	32	54.0
2003	8	13.5
2004	5	8.4
2005	14	23.6
2006	8	13.5
2007	3	5.1
2008	2	3.4
2009	1	1.7
2010	1	1.7
2011	0	0.0
2012	0	0.0
2013	2	3.4
2014	17	28.7
2015	6	10.1
2016	7	11.8
Average	7.3	12.4

5.0 SUMMARY AND CONCLUSIONS

Cal Water has provided water service to the City of Oroville since 1927. As it is regulated by the CPUC, Cal Water must justify and document the need for capital improvements through the GRC process. Cal Water uses planning documents, along with improvement needs identified by Oroville District staff to develop capital projects for inclusion in the GRC. Projects included in the GRC are then given another level of scrutiny by the ORA, an independent state consumer advocate agency that advocates on behalf of Cal Water's customers.

The principal capital needs for the Oroville District system are related to renewal and replacement of facilities and pipelines. Over the last 10 plus years, Cal Water has developed a comprehensive program for evaluating its pipeline assets, which represents its largest capital investment in the Oroville District water system, as well as assessed replacement needs for other water system facilities, based on facilities condition and performance. These programs use historical information, along with risk information to prioritize capital projects.

Much like water systems across the country, Cal Water's system is aging. However, the system is well maintained. Cal Water has a preventative maintenance program to routinely inspect and operate facilities to maintain and repair them, as needed. Since completion of its residential metering program in 2013, Cal Water calculates non-revenue water, which includes apparent losses due to meter differences, data error and unauthorized consumption, and real losses due to leakage. Cal Water's non-revenue water, as a percentage of total system production, has ranged from 7.5 to 8.1 percent in the last three years, which is considered an acceptable level for water utilities.

The results of our evaluation of Cal Water's operation and maintenance of the Oroville District water system indicates that they are adequately prioritizing and replacing aging infrastructure, when required. Cal Water maintenance and assessment practices appear to be adequate for delivering a high-quality water supply to their Oroville customers. Finally, Cal Water's practice of prioritizing main replacements based on pipeline condition and performance is a sound practice, given the relatively small customer base in the Oroville District. This approach helps to control the cost of water service.

Figure 2-1

Oroville District Service Area Boundary

California Water Service Oroville System Review

Oroville Water Treatment Plant Tank(s) ቀ Well(s) Pump Station(s) C Pressure Reducing Valve ۲ Pressure Zone Boundary

Figure 2-2

Oroville District Distribution System

California Water Service Oroville System Review

